Calculations in Chemistry Foundation Combined

Image: Sub-particles Image: Sub-particles Image: Proton no. = atomic number Image: Sub-particles	$\begin{array}{c} \mathbf{Cm^3 and dm^3} \\ \mathbf{Cm^3} \rightarrow \mathbf{dm^3} = \div 1000 \end{array}$	
Electron no. = atomic number Proton no. = mass number – atomic number	CONCENTRATION A measure of the amount of moles in a given volume.	
I Relative Atomic Mass is the average mass of I an atom of an element compared to the I mass of 1/12 th of an atom of carbon-12.	$\begin{array}{l} \text{Conc.(mol dm^{-3})} = \underline{\text{moles (mol)}}\\ \text{Volume (dm^3)}\\ \text{I Conc.(g dm^{-3})} = \underline{\text{mass (g)}}\\ \text{Volume (dm^3)} \end{array}$	
Relative atomic mass Relative atomic mass = (abundance of isotope 1 x mass) Tota	of isotope 1) + (abundance of isotope 2 x mass of isotope 2) I abundance	
Rate of reaction (g/s or cm ³ /s) Mean rate of reaction = <u>quantity of reactant used</u> time taken Mean rate of reaction = <u>quantity of product formed</u> Time taken	Chromatography Rf = <u>solvent front distance</u> spot distance	

Calculations in Chemistry Foundation Combined

Sub-particles Proton no, = atomic number Electron no. = atomic number Proton no. = mass number – atomic number	$\begin{array}{c} \mathbf{Cm^3 \text{ and } dm^3} \\ cm^3 \rightarrow dm^3 = \div 1000 \\ \hline \mathbf{CONCENTRATION} \\ A \text{ measure of the amount of moles in a given} \end{array}$
Relative Atomic Mass is the average mass of an atom of an element compared to the mass of 1/12 th of an atom of carbon-12.	volume. Conc.(mol dm ⁻³) = <u>moles (mol)</u> Volume (dm ³) Conc.(g dm ⁻³) = <u>mass (g)</u> Volume (dm ³)
Relative atomic mass Relative atomic mass = (abundance of isotope 1 x mass) Tot.	s of isotope 1) + (abundance of isotope 2 x mass of isotope 2) al abundance
Rate of reaction (g/s or cm ³ /s) Mean rate of reaction = <u>quantity of reactant used</u> time taken Mean rate of reaction = <u>quantity of product formed</u> Time taken	Chromatography Rf = <u>solvent front distance</u> spot distance

Calculations in Chemistry Higher Combined

Sub-particles Proton no, = atomic number Electron no. = atomic number Proton no. = mass number – atomic number	MOLES A measure of the amount of substance. Number of = mass (m) moles (n) Molar mass (M _r)
Relative Atomic Mass is the average mass of an atom of an element compared to the mass of 1/12 th of an atom of carbon-12.	Mass is measured in grams. Molar mass is calculated by adding the atomic masses (from the Periodic Table) together.
Relative atomic mass Relative atomic mass = (abundance of isotope 1 x mass of is Total ab	sotope 1) + (abundance of isotope 2 x mass of isotope 2)
REACTING MASSES	C From the question.

Mass = moles (from above) x molar mass	A _r moles mass	<	Molar mass from the atomic mass number on the Periodic Table.	
$\begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $		 e of reaction (g	$r_{\rm s}$ sor cm ³ /s)	

CONCENTRATION

÷ molar mass

L

L

A measure of the amount of moles in a given volume.

mass

 $Conc.(mol dm^{-3}) = moles (mol)$ Volume (dm³) Conc.($g dm^{-3}$) = mass (g) Volume (dm³)

time taken Mean rate of reaction = <u>quantity of product formed</u> Time taken

> Chromatography Rf = solvent front distance spot distance

Energy change

Energy change = sum of energy needed to break bonds - sum of energy released making bonds

Calculations in Chemistry Foundation Triple

Sub-particles	$\begin{array}{c} \textbf{Cm}^3 \text{ and } \textbf{dm}^3 \\ \text{cm}^3 \rightarrow \text{dm}^3 = \div 1000 \end{array}$		
Electron no. = atomic number Proton no. = mass number – atomic number Relative Atomic Mass is the average mass of an atom of an element compared to the mass of 1/12 th of an atom of carbon-12.	CONCENTRATION A measure of the amount of moles in a given volume. Conc.(mol dm ⁻³) Use the volume (dm ³) Conc.(g dm ⁻³) The volume (dm ³) Volume (dm ³)		
Relative atomic mass Relative atomic mass = (abundance of isotope 1 x mass of i Total al	sotope 1) + (abundance of isotope 2 x mass of isotope 2) undance		
Rate of reaction Mean rate of reaction = <u>quantity of reactant used</u> time taken Mean rate of reaction = <u>quantity of product formed</u> Time taken	Chromatography Rf = <u>solvent front distance</u> spot distance		
Image: Percentage yield Image: Percentage yield <td>PERCENTAGE COMPOSITION I % composition = atomic mass element x 100</td>	PERCENTAGE COMPOSITION I % composition = atomic mass element x 100		
Theoretical yield	molar mass of compound		

Calculations in Chemistry Higher Triple 1

Sub-particles	۲ - ا	MOLES
Proton no, = atomic number Electron no. = atomic number Proton no. = mass number – atomic number		A measure of the amount of substance. Number of = <u>mass (m)</u> moles (n) Molar mass (M _r)
Relative Atomic Mass is the average mass of an atom of an element compared to the mass of $1/12^{th}$ of an atom of carbon-12.		Mass is measured in grams. Molar mass is calculated by adding the atomic masses (from the Periodic Table) together.

Relative atomic mass

Relative atomic mass = (abundance of isotope 1 x mass of isotope 1) + (abundance of isotope 2 x mass of isotope 2) Total abundance

Rate of reaction

Mean rate of reaction = <u>quantity of reactant used</u> time taken Mean rate of reaction = <u>quantity of product formed</u> Time taken

GASES Moles of gas = volume of gas (dm³) 24 dm³ Chromatography Rf = <u>solvent front distance</u> spot distance

PERCENTAGE COMPOSITION % = <u>atomic mass element</u> x 100 molar mass of compound

Energy change

Energy change = sum of energy needed to break bonds - sum of energy released making bonds

Atom economy

Atom economy = <u>Mr of desired product</u>x100 Mr of all products

Percentage yield	
Percentage yield = <u>Actual yield</u>	_x100
Theoretical yield	ļ

Calculations in Chemistry Higher Triple 2

